冲动
专家介绍

许多行业都在为自己发现微波和等离子体技术--加快工艺流程,使其更加精确,使其更加节能。作为全球领先的制造商,我们的专家是发展的源头。访问MUEGGE博客,深入了解未来的能源解决方案是由什么组成的。
项目
人工钻石生长 / 半导体 / 微机电系统 / 微波技术 / 汽车工业 微波(等离子)工艺中的反射功率
“反射功率,是指微波功率中未被耦合到工艺中并返回到发生器的那部分功率。在微波工艺中,它是用于评估微波能量转移到材料中的效率的重要参数。本文将介绍反射功率值的含义,哪些参数会影响微波的反射以及如何最小化反射功率。 微波等离子体系统的优点之一是,与RF(射频)等离子体系统不同,反射功率不会造成任何直接损害,并可用于工艺优化。 微波(等离子)系统的说明 在下面的示例中,采用大气燃烧器模型来描述典型的微波等离子体系统。 图1:微波系统的功能模型,包括(1)微波发生器; (2)隔离器; (3)3销钉调谐器; (4)大气燃烧器(代表任意一种应用) 由高压电源(通常是开关电源)驱动的微波发生器通过磁控管产生微波功率;在图1中,频率为2.45 GHz。 隔离器是一个两端口设备,允许微波功率通过微波发生器传输到负载,但如果反射功率发生,则不能返回到磁控管/发生器。它最常见的用途是保护磁控管免受反射功率可能产生的破坏性作用。在隔离器的入口处,反射功率(通常是由吸收微波能力差的负载产生)被转移到完美匹配的水负载并吸收,作为热量散发到循环水中。 三销钉调谐器是一个可选组件,通过使磁控管的阻抗与负载(例如,等离子)的阻抗相匹配,从而为系统提供更宽的工艺窗。对于动态大的工艺,自动调谐器很有用。但是,如果工艺参数变化很小,即对于微波耦合是稳定的,则从工艺之初就可以永久匹配阻抗。在这种情况下,可以通过独立的、固定的调整元件进行匹配。 常压等离子源(APS)代表的负载 阻抗不匹配导致的反射功率 根本原因 当等离子系统的组件(即微波发生器和等离子源)匹配不正确时,总会产生反射功率。在微波工艺中,波导几何形状改变、传输线路几何形状(同轴导体,直波导等)改变会造成匹配不正确。工艺腔中介电负载的变化也会导致匹配不正确。因此,微波耦合可以因工艺的材料、蒸汽、等离子体起辉、温度、压力等变化而变化,则需要调节阻抗匹配以减小反射功率。这些变化越突然,用单个匹配元件补偿不匹配的难度就越大。 所有这些效应都可以通过阻抗匹配来解释,并可通过史密斯图可视化。可以为发生器和负载分配(取决于频率)复合阻抗,并通过一个复合匹配网络进行匹配。匹配网络由理想的无电阻电感和电容构成。在图1的情形中,就是调谐器的三个调谐销钉,可调节其在波导中的不同深度。 对微波工艺的意义 由于有隔离器作为保护元件,对于微波应用中的硬件,产生反射功率并不是什么主要问题:反射功率被隔离器的水负载吸收并转化为热量,即便反射功率达到微波发生器功率的100%。 反射功率通常是在隔离器上测量,因此,使用者能计算出负载吸收了多少功率。 通常,微波工艺应在反射功率的最小值下运行,以便使工艺效率最大化。 对RF(射频)工艺的意义 微波频率相比,RF等离子在较低的频率下工作(如13.56 MHz对于2.45 GHz),因此在RF等离子工艺中无法使用隔离器,这样一来反射功率就变得至关重要。 …
了解更多
项目
半导体 / 微机电系统 / 微波技术 / 汽车工业 3D模拟:简化组件开发流程
开发热加工设备时,原型机的测试和多次重复会耗费大量时间和资源。 3D仿真技术使您可以加快原型设计期、及时实施调整,同时提供详细而全面的视野以优化您的微波应用。了解我们在MUEGGE使用的原型机虚拟工具,为您的项目助力。 为您的项目选择理想的仿真方法 无需进行复杂的样品生产,3D仿真工具能够逼真而准确的展示您的功率需求、应用端尺寸和阻抗匹配。然而不是任何一种工具和方法对任何人都有用。为节省时间并获得最佳结果,请向专家咨询,分析您的微波产品材料特性,提出最适合您项目目标的仿真和分析变量。 采用高性能3D分析以实现最大速度和精度 不要在微波仿真工具的质量上打折扣:性能低劣的服务器结构或过时的系统,会让您从这项技术中获取的优势荡然无存。通过使用高性能的3D电磁分析软件,可以以最短的时间、最高的精度执行诸如3D设计、EM分析或优化电磁组件之类的工作。 MUEGGE的仿真可能性涵盖了广泛的应用领域,例如从简单的波导组件耦合分析,到复杂多模应用中场强分布的完整仿真,一应俱全。 可视化:从柔性纳米结构到工业混合应用 分析整个带有高频电路中分立元件的PCB板 高速(> 200um / h)完全去除光刻胶 高选择性,不改变底层 更多独到之处 图01:带有可变同轴过渡和WR975模式转换器的垂直功率分配器 利用混合仿真 通过结合单个应用器,获得用于放大工艺和扩充产能的综合数据。 这些混合仿真使您能以有效且简单的方式,来分析和虚拟化高频能量和附加电磁影响系统的复杂作用。这对于确定天线系统的效率因子或谐振器的加热性能至关重要。 图片02:带有可调同轴阻抗耦合器的4倍高功率组合器 采用3D过滤器结构作为EMV和员工安全的基础 得益于3D-HF结构仿真,可重复设计频率适配的微波滤波器系统,使应用设备在低泄漏、半开式连续运行。 通过对锁定结构进行连续的空间优化,我们能始终对微波或混合技术加热的多种应用的EMV阈值进行连续观察。 3D模拟:减少时间,提高质量 …
了解更多
项目
微波技术 / 汽车工业 微波-混合-硫化的主要优点
快速、高效、灵活。 多年前,微波和微波混合应用给高性能硫化工艺设计带来了革命。优势非常明显:您会迅速达到较高的硫化温度,从而大大减少暴露时间。 经由3D模拟计算而优化的微波天线精确设计,能够大大提高硫化工艺的效率。刷新和深化您对这种高效硫化技术的了解,做掌控这一制胜法宝的资深微波应用专家。 任意横截面上的同质核心温度 微波和微波-混合-应用非常适合合成橡胶和橡胶聚合物的加热和硫化,因为这些聚合物能很好地吸收电磁波。典型的聚合物,如EPDM(乙丙二烯单体橡胶),NBR(丁腈橡胶)或SBR(丁苯橡胶)在10°C至170°C的宽范围内,几乎能完全吸收2.45 GHz和915 MHz的微波能。也可通过微波附加加热来更快地达到较高的硫化温度,形成不同的应用和工艺,从而大幅减少暴露时间。 基于3D仿真的天线和通道设计 微波注入天线的设计,对加热通道中所期望的能量分布至关重要。对应这一目标,应尽力关注剖面和剖面区域,使能量尽可能均匀充满整个腔体,用以加工高孔泡沫和海绵橡胶产品。对于微波系统的各个天线的定位和对准,至关重要的是通道横截面的整个尺寸,以及内壁和传送系统的特性。在设计加热区域时采用3D模拟计算,我们沿传送方向、或材料横截面、以及微波天线的类型,优化出辐射的理想几何分布。同时,通过将微波耦合设计为同轴天线、缝隙波导或喇叭形天线,可考虑高密度剖面区采用例如PPP(聚对苯撑)或金属集成镶嵌结构。 所有功率范围的微波发生器 天线系统的微波能量,由一些带开关电源的、可自动调节的微波发生器提供,单个微波源功率从1000W至15 kW。 结合6 kW以上的高能微波源和无损功率分配器,可以将多个天线连接成天线阵列,从而在大跨度工艺隧道区域内实现同相能量耦合。这种受控的能量供应,打造出具有微波源之间最小的交叉耦合的加热通道结构,从而使微波能量的利用率最大化。 根据需求,量身定制硫化方案 无论您是需要一条新的能量均匀分布、高度灵活的硫化通道,还是需要低损耗反射系统来改善现有通道设置的效率,微波技术都可为您提供最优解。 …
了解更多

白皮书

进展在细节中。了解微波和等离子体技术的最新发现和先进的应用发展--直接来自我们的专家,为您的工艺优化量身定做。

Tel.: +49 (0) 6164 – 9307 – 0

Fax: +49 (0) 6164 – 9307 – 93

info@muegge.de

MUEGGE Group

Hochstrasse 4 – 6

64385 Reichelsheim

Germany

Tel.: +1-209-527-8960

Fax: +1-209-527-5385

sales@muegge-gerling.com

Gerling Applied Engineering, Inc.

P.O. Box 580816

Modesto, CA 95358-0816

USA

Tel.: +49 (0) 6164 – 9307 – 0

Fax: +49 (0) 6164 – 9307 – 93

info@muegge.de

MUEGGE Group

Hochstrasse 4 – 6

64385 Reichelsheim

Germany

Tel.: +1-209-527-8960

Fax: +1-209-527-5385

sales@muegge-gerling.com

Gerling Applied Engineering, Inc.

P.O. Box 580816

Modesto, CA 95358-0816

USA

MUEGGE
Products.

You need a special solution for your industrial process?